优化 VEO API 使用效果的建议和技巧
enhance_prompt
选择高质量图片
保持风格一致
相关性优先
避免冲突
import time import math def exponential_backoff_polling(client, task_id, initial_interval=5, max_interval=60): """ 指数退避轮询策略 """ interval = initial_interval attempt = 0 while True: try: status_data = client.get_status(task_id) status = status_data.get('status') if status == 'completed': return status_data['result'] elif status == 'failed': raise Exception(f"生成失败: {status_data.get('error')}") # 指数退避 time.sleep(interval) attempt += 1 interval = min(initial_interval * math.pow(1.5, attempt), max_interval) except Exception as e: print(f"轮询出错: {e}") time.sleep(interval)
def retry_with_backoff(func, max_retries=3, backoff_factor=2): """ 带退避的重试机制 """ for attempt in range(max_retries): try: return func() except Exception as e: if attempt == max_retries - 1: raise wait_time = backoff_factor ** attempt print(f"失败,{wait_time}秒后重试...") time.sleep(wait_time)
try: result = client.submit_task(prompt) except requests.exceptions.ConnectionError: print("网络连接失败,请检查网络") except requests.exceptions.Timeout: print("请求超时,请稍后重试")
async def batch_process_videos(prompts, max_concurrent=5): """ 批量处理视频生成 """ semaphore = asyncio.Semaphore(max_concurrent) async def process_one(prompt): async with semaphore: return await client.submit_and_wait(prompt) tasks = [process_one(prompt) for prompt in prompts] return await asyncio.gather(*tasks)
def choose_model(requirements): """ 根据需求智能选择模型 """ if requirements.get('need_fast'): return 'veo3-fast' elif requirements.get('high_quality'): return 'veo3-pro' elif requirements.get('precise_control'): return 'veo3-pro-frames' else: return 'veo3' # 默认选择标准版
veo3
veo3-fast
import logging from datetime import datetime class VEOLogger: def __init__(self): self.logger = logging.getLogger('veo_api') def log_task_submission(self, task_id, prompt, model): self.logger.info(f"Task submitted: {task_id}") self.logger.debug(f"Prompt: {prompt[:50]}...") self.logger.debug(f"Model: {model}") def log_task_completion(self, task_id, duration, video_url): self.logger.info(f"Task completed: {task_id}") self.logger.info(f"Duration: {duration}s") self.logger.debug(f"Video URL: {video_url}")