整合视觉、语言、音频等多种模态的AI交互技术,实现更自然和丰富的人机交互体验
class MultimodalFusion:
def __init__(self, fusion_type='early'):
self.fusion_type = fusion_type
def early_fusion(self, text, image, audio=None):
"""早期融合:原始特征级别融合"""
# 统一编码空间
text_tokens = self.tokenize_text(text)
image_patches = self.patchify_image(image)
if audio:
audio_frames = self.encode_audio(audio)
combined = torch.cat([text_tokens, image_patches, audio_frames])
else:
combined = torch.cat([text_tokens, image_patches])
# 联合处理
return self.transformer(combined)
def late_fusion(self, text, image, audio=None):
"""晚期融合:独立处理后合并"""
text_features = self.text_encoder(text)
image_features = self.vision_encoder(image)
if audio:
audio_features = self.audio_encoder(audio)
features = [text_features, image_features, audio_features]
else:
features = [text_features, image_features]
# 特征级融合
return self.fusion_layer(torch.stack(features))
class CrossModalAttention(nn.Module):
"""跨模态注意力实现深度交互"""
def forward(self, query_modal, key_modal, value_modal):
# 计算跨模态注意力分数
attention_scores = torch.matmul(
query_modal, key_modal.transpose(-2, -1)
) / math.sqrt(self.d_k)
# 应用注意力权重
attention_weights = F.softmax(attention_scores, dim=-1)
# 跨模态信息传递
output = torch.matmul(attention_weights, value_modal)
return output
模型 | 架构特点 | 支持模态 | 核心优势 |
---|---|---|---|
GPT-4o | 统一模型,全模态 | 文本/图像/音频/视频 | ”Omni”全能处理 |
Gemini Ultra | 原生多模态 | 文本/图像/音频/视频 | 超长上下文(1M tokens) |
Claude 3.5 Vision | 视觉增强LLM | 文本/图像 | 精确的视觉理解 |
DALL-E 3 | 文本到图像生成 | 文本→图像 | 创意生成能力 |
Molmo-72B | 开源SOTA | 文本/图像 | 媲美GPT-4V性能 |
class CLIPModel:
"""对比语言-图像预训练"""
def contrastive_loss(self, image_embeddings, text_embeddings):
# 归一化嵌入
image_embeddings = F.normalize(image_embeddings, p=2, dim=1)
text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
# 计算相似度矩阵
logits = torch.matmul(image_embeddings, text_embeddings.T) * self.temperature
# 对比损失
labels = torch.arange(len(logits)).to(logits.device)
loss_i = F.cross_entropy(logits, labels)
loss_t = F.cross_entropy(logits.T, labels)
return (loss_i + loss_t) / 2
# LLaVA风格的视觉指令微调
def visual_instruction_tuning(model, dataset):
"""使用GPT-4生成的合成任务训练"""
for batch in dataset:
# 多模态输入
image = batch['image']
instruction = batch['instruction']
# 生成视觉-语言响应
response = model.generate(
image=image,
text=f"Human: {instruction}\nAssistant:",
max_length=512
)
# 计算损失并更新
loss = compute_loss(response, batch['ground_truth'])
loss.backward()
class StreamingMultimodal:
def __init__(self):
self.audio_buffer = CircularBuffer(size=1000)
self.video_buffer = FrameBuffer(fps=30)
self.fusion_engine = RealTimeFusion()
async def process_stream(self):
while True:
# 并行处理多路输入
audio_chunk = await self.audio_buffer.get_chunk()
video_frame = await self.video_buffer.get_frame()
# 实时融合
features = await asyncio.gather(
self.process_audio(audio_chunk),
self.process_video(video_frame)
)
# 生成响应
response = self.fusion_engine.generate(features)
yield response
class DocumentAnalyzer:
def analyze_document(self, pdf_path):
# 1. 多模态提取
pages = extract_pages(pdf_path)
results = []
for page in pages:
# 分离模态
text = extract_text(page)
tables = detect_tables(page)
figures = extract_figures(page)
# 跨模态理解
context = self.multimodal_model.understand(
text=text,
tables=tables,
figures=figures,
task="综合理解文档内容"
)
results.append(context)
# 生成结构化报告
return self.generate_report(results)
class MeetingAssistant:
def __init__(self):
self.speech_recognizer = WhisperLarge()
self.vision_model = GPT4Vision()
self.emotion_detector = EmotionRecognition()
def process_meeting(self, video_stream, audio_stream):
# 实时转录
transcript = self.speech_recognizer.transcribe(audio_stream)
# 视觉理解(手势、表情、白板内容)
visual_context = self.vision_model.analyze_frames(
video_stream,
tasks=['gesture_recognition', 'whiteboard_ocr', 'participant_tracking']
)
# 情感分析
emotions = self.emotion_detector.analyze(
audio=audio_stream,
video=video_stream
)
# 生成会议纪要
summary = self.generate_summary(
transcript=transcript,
visual_notes=visual_context,
emotional_context=emotions
)
return summary
class ARAssistant:
def augment_reality(self, camera_feed):
# 场景理解
scene = self.understand_scene(camera_feed)
# 物体检测与识别
objects = self.detect_objects(camera_feed)
# 生成上下文相关信息
for obj in objects:
# 多模态查询
info = self.knowledge_base.query(
visual=obj.appearance,
context=scene.description,
user_intent=self.get_user_intent()
)
# 渲染AR叠加
self.render_overlay(
position=obj.location,
content=info,
style=self.adaptive_style(scene.lighting)
)
class AutonomousPerception:
def perceive_environment(self):
# 并行处理多源数据
sensor_data = {
'cameras': self.process_cameras(), # 8个摄像头
'lidar': self.process_lidar(), # 3D点云
'radar': self.process_radar(), # 毫米波雷达
'ultrasonic': self.process_ultrasonic() # 超声波传感器
}
# 深度融合
fused_perception = self.deep_fusion_network(sensor_data)
# 实时决策
decisions = self.decision_engine(
perception=fused_perception,
constraints={
'latency': 50, # 毫秒
'safety_margin': 0.99
}
)
return decisions
def selective_processing(input_data, task):
"""根据任务动态选择处理模态"""
relevance_scores = compute_modal_relevance(input_data, task)
# 只处理相关模态
selected_modals = [
modal for modal, score in relevance_scores.items()
if score > 0.3
]
return process_selected(selected_modals, input_data)
任务类型 | GPU分配 | 内存需求 | 延迟要求 |
---|---|---|---|
实时对话 | 1x A100 | 16GB | 小于100ms |
文档分析 | 2x V100 | 32GB | 小于5s |
视频理解 | 4x A100 | 64GB | 小于30s |
AR/VR | 边缘GPU | 8GB | 小于20ms |