概念定义

BIG-bench(Beyond the Imitation Game Benchmark)是由Google主导、442位作者协作开发的综合性评估基准,包含204个多样化任务,专注于测试超出当前语言模型能力范围的挑战性问题,评估LLM在复杂推理、跨域知识和创新思维方面的表现。

详细解释

BIG-bench代表了LLM评估的新范式,突破了传统基准的局限性。该基准诞生于对现有评估工具的不满:狭窄的评估范围、快速达到的性能饱和、缺乏挑战性任务等问题。2025年,BIG-bench仍是衡量模型能力上限的重要标准。 基准的独特价值在于其广泛性和前瞻性:涵盖语言学、数学、科学、社会认知等多个领域,每个任务都经过精心设计以测试模型的特定能力。BIG-bench Hard(BBH)子集更是聚焦于23个最具挑战性的多步推理任务,成为区分顶级模型的关键基准。 研究发现模型性能虽随规模提升,但与人类表现仍有显著差距,突显了当前LLM技术的边界和未来发展方向。

基准架构体系

1. 任务分类和覆盖

六大核心领域
from typing import Dict, List, Any, Optional
import json
import random
import numpy as np

class BIGBenchDataset:
    """BIG-bench数据集管理"""
    
    def __init__(self):
        self.task_categories = {
            "语言学和语言理解": {
                "tasks": [
                    "语法错误检测", "语义消歧", "语言翻译", 
                    "方言识别", "语音学分析", "语法分析"
                ],
                "count": 42,
                "description": "测试语言结构和语义理解能力"
            },
            
            "数学和逻辑推理": {
                "tasks": [
                    "数学运算", "几何问题", "逻辑推理",
                    "概率计算", "代数求解", "证明构造"
                ],
                "count": 38,
                "description": "评估数学计算和逻辑思维能力"
            },
            
            "科学知识和推理": {
                "tasks": [
                    "物理原理", "化学反应", "生物学概念",
                    "天文学知识", "地质学理解", "环境科学"
                ],
                "count": 45,
                "description": "检验科学领域的知识掌握和应用"
            },
            
            "常识推理和社会理解": {
                "tasks": [
                    "社会常识", "道德判断", "文化理解",
                    "心理学概念", "人际关系", "社会规范"
                ],
                "count": 36,
                "description": "测试对人类社会和行为的理解"
            },
            
            "创造性思维和问题解决": {
                "tasks": [
                    "创意写作", "问题分解", "类比推理",
                    "假设检验", "策略制定", "创新思考"
                ],
                "count": 28,
                "description": "评估创造性和复杂问题解决能力"
            },
            
            "偏见检测和安全性": {
                "tasks": [
                    "性别偏见检测", "种族偏见识别", "年龄歧视判断",
                    "宗教偏见分析", "社会刻板印象", "公平性评估"
                ],
                "count": 15,
                "description": "检测模型中的偏见和安全隐患"
            }
        }
        
        self.initialize_tasks()
    
    def initialize_tasks(self):
        """初始化任务数据"""
        self.all_tasks = {}
        task_id = 0
        
        for category, info in self.task_categories.items():
            for task_name in info["tasks"]:
                self.all_tasks[f"bigbench_{task_id}"] = {
                    "id": f"bigbench_{task_id}",
                    "name": task_name,
                    "category": category,
                    "difficulty": random.choice(["medium", "hard", "very_hard"]),
                    "requires_chain_of_thought": random.choice([True, False]),
                    "max_score": 1.0
                }
                task_id += 1
        
        print(f"BIG-bench: 初始化了 {len(self.all_tasks)} 个任务")
    
    def get_bigbench_hard_tasks(self) -> Dict[str, Any]:
        """获取BIG-bench Hard任务子集"""
        # 23个最具挑战性的任务
        bbh_tasks = {
            "boolean_expressions": "布尔表达式求值",
            "causal_judgement": "因果关系判断", 
            "date_understanding": "日期理解",
            "disambiguation_qa": "消歧问答",
            "dyck_languages": "Dyck语言识别",
            "formal_fallacies": "形式逻辑谬误",
            "geometric_shapes": "几何形状推理",
            "hyperbaton": "倒装句理解",
            "logical_deduction": "逻辑推演",
            "movie_recommendation": "电影推荐",
            "multistep_arithmetic": "多步算术",
            "navigate": "导航推理",
            "object_counting": "物体计数",
            "penguins_in_a_table": "表格推理",
            "reasoning_about_colored_objects": "彩色物体推理",
            "ruin_names": "名字破坏",
            "salient_translation_error_detection": "翻译错误检测",
            "snarks": "讽刺理解",
            "sports_understanding": "体育理解",
            "temporal_sequences": "时序推理",
            "tracking_shuffled_objects": "物体追踪",
            "web_of_lies": "谎言网络",
            "word_sorting": "词汇排序"
        }
        
        return bbh_tasks
    
    def analyze_task_distribution(self) -> Dict[str, Any]:
        """分析任务分布"""
        distribution = {}
        
        for category, info in self.task_categories.items():
            distribution[category] = {
                "task_count": info["count"],
                "percentage": info["count"] / 204 * 100,
                "sample_tasks": info["tasks"][:3]
            }
        
        return {
            "total_tasks": 204,
            "category_distribution": distribution,
            "bbh_subset": len(self.get_bigbench_hard_tasks()),
            "difficulty_levels": self.get_difficulty_distribution()
        }
    
    def get_difficulty_distribution(self) -> Dict[str, int]:
        """获取难度分布"""
        difficulty_count = {}
        for task in self.all_tasks.values():
            difficulty = task["difficulty"]
            difficulty_count[difficulty] = difficulty_count.get(difficulty, 0) + 1
        
        return difficulty_count

class BIGBenchEvaluator:
    """BIG-bench评估器"""
    
    def __init__(self):
        self.dataset = BIGBenchDataset()
        self.evaluation_history = []
        self.setup_evaluation_methods()
    
    def setup_evaluation_methods(self):
        """设置评估方法"""
        self.evaluation_methods = {
            "zero_shot": self.zero_shot_evaluation,
            "few_shot": self.few_shot_evaluation, 
            "chain_of_thought": self.chain_of_thought_evaluation,
            "few_shot_cot": self.few_shot_cot_evaluation
        }
    
    def evaluate_model(self, 
                      model_inference_func,
                      evaluation_method: str = "few_shot",
                      num_shots: int = 3,
                      sample_tasks: int = None,
                      use_cot: bool = True) -> Dict[str, Any]:
        """评估模型在BIG-bench上的表现"""
        
        print(f"开始BIG-bench评估,方法: {evaluation_method}")
        
        # 选择评估任务
        tasks_to_evaluate = list(self.dataset.all_tasks.values())
        if sample_tasks:
            tasks_to_evaluate = random.sample(tasks_to_evaluate, min(sample_tasks, len(tasks_to_evaluate)))
        
        evaluation_results = {}
        category_performance = {}
        
        for i, task in enumerate(tasks_to_evaluate):
            print(f"评估任务 {i+1}/{len(tasks_to_evaluate)}: {task['name']}")
            
            try:
                # 选择评估方法
                eval_method = self.evaluation_methods[evaluation_method]
                task_result = eval_method(
                    model_inference_func,
                    task,
                    num_shots=num_shots,
                    use_cot=use_cot
                )
                
                evaluation_results[task["id"]] = task_result
                
                # 按类别统计
                category = task["category"]
                if category not in category_performance:
                    category_performance[category] = []
                category_performance[category].append(task_result)
                
            except Exception as e:
                print(f"任务 {task['name']} 评估失败: {e}")
                evaluation_results[task["id"]] = {
                    "score": 0.0,
                    "error": str(e),
                    "task_info": task
                }
        
        # 计算总体统计
        overall_stats = self.calculate_bigbench_statistics(
            evaluation_results, category_performance
        )
        
        return {
            "task_results": evaluation_results,
            "category_performance": category_performance,
            "overall_statistics": overall_stats,
            "metadata": {
                "evaluation_method": evaluation_method,
                "num_shots": num_shots,
                "use_chain_of_thought": use_cot,
                "total_tasks_evaluated": len(tasks_to_evaluate),
                "timestamp": time.time()
            }
        }
    
    def zero_shot_evaluation(self, model_func, task: Dict, **kwargs) -> Dict[str, Any]:
        """零样本评估"""
        prompt = f"""
任务: {task['name']}
请直接回答以下问题,不需要解释过程。

问题: {self.generate_sample_question(task)}
答案:"""
        
        try:
            response = model_func(prompt)
            score = self.score_response(task, response)
            
            return {
                "score": score,
                "response": response,
                "method": "zero_shot",
                "task_info": task
            }
        
        except Exception as e:
            return {
                "score": 0.0,
                "error": str(e),
                "task_info": task
            }
    
    def few_shot_evaluation(self, model_func, task: Dict, num_shots: int = 3, **kwargs) -> Dict[str, Any]:
        """少样本评估"""
        # 构建few-shot示例
        examples = self.generate_few_shot_examples(task, num_shots)
        
        prompt = f"任务: {task['name']}\n\n"
        prompt += "以下是一些示例:\n\n"
        
        for i, example in enumerate(examples):
            prompt += f"示例 {i+1}:\n"
            prompt += f"问题: {example['question']}\n"
            prompt += f"答案: {example['answer']}\n\n"
        
        prompt += "现在请回答:\n"
        prompt += f"问题: {self.generate_sample_question(task)}\n"
        prompt += "答案:"
        
        try:
            response = model_func(prompt)
            score = self.score_response(task, response)
            
            return {
                "score": score,
                "response": response,
                "method": "few_shot",
                "num_shots": num_shots,
                "task_info": task
            }
        
        except Exception as e:
            return {
                "score": 0.0,
                "error": str(e),
                "task_info": task
            }
    
    def chain_of_thought_evaluation(self, model_func, task: Dict, **kwargs) -> Dict[str, Any]:
        """思维链评估"""
        prompt = f"""
任务: {task['name']}
请逐步思考并解决以下问题。请先说明你的思考过程,然后给出最终答案。

问题: {self.generate_sample_question(task)}

思考过程:"""
        
        try:
            response = model_func(prompt)
            score = self.score_response(task, response)
            
            return {
                "score": score,
                "response": response,
                "method": "chain_of_thought",
                "reasoning_steps": self.extract_reasoning_steps(response),
                "task_info": task
            }
        
        except Exception as e:
            return {
                "score": 0.0,
                "error": str(e),
                "task_info": task
            }
    
    def few_shot_cot_evaluation(self, model_func, task: Dict, num_shots: int = 3, **kwargs) -> Dict[str, Any]:
        """少样本+思维链评估"""
        # 构建带推理过程的示例
        examples = self.generate_cot_examples(task, num_shots)
        
        prompt = f"任务: {task['name']}\n\n"
        prompt += "以下是一些带有思考过程的示例:\n\n"
        
        for i, example in enumerate(examples):
            prompt += f"示例 {i+1}:\n"
            prompt += f"问题: {example['question']}\n"
            prompt += f"思考: {example['reasoning']}\n"
            prompt += f"答案: {example['answer']}\n\n"
        
        prompt += "现在请按照同样的方式思考并回答:\n"
        prompt += f"问题: {self.generate_sample_question(task)}\n"
        prompt += "思考:"
        
        try:
            response = model_func(prompt)
            score = self.score_response(task, response)
            
            return {
                "score": score,
                "response": response,
                "method": "few_shot_cot",
                "num_shots": num_shots,
                "reasoning_quality": self.assess_reasoning_quality(response),
                "task_info": task
            }
        
        except Exception as e:
            return {
                "score": 0.0,
                "error": str(e),
                "task_info": task
            }
    
    def generate_sample_question(self, task: Dict) -> str:
        """生成示例问题"""
        task_name = task["name"]
        
        # 根据任务类型生成相应问题
        if "数学" in task_name or "算术" in task_name:
            return "计算: (23 + 17) × 4 - 15 ÷ 3 = ?"
        elif "逻辑" in task_name:
            return "如果所有的鸟都会飞,企鹅是鸟,那么企鹅会飞吗?请解释。"
        elif "语言" in task_name:
            return "请找出以下句子中的语法错误:'我昨天去了商店买一些苹果。'"
        elif "常识" in task_name:
            return "为什么人们通常在晚上睡觉而不是在白天?"
        else:
            return f"这是一个关于{task_name}的测试问题。"
    
    def generate_few_shot_examples(self, task: Dict, num_shots: int) -> List[Dict[str, str]]:
        """生成少样本示例"""
        examples = []
        
        for i in range(num_shots):
            examples.append({
                "question": f"示例问题 {i+1}",
                "answer": f"示例答案 {i+1}"
            })
        
        return examples
    
    def generate_cot_examples(self, task: Dict, num_shots: int) -> List[Dict[str, str]]:
        """生成思维链示例"""
        examples = []
        
        for i in range(num_shots):
            examples.append({
                "question": f"示例问题 {i+1}",
                "reasoning": f"让我逐步思考这个问题:首先...然后...因此...",
                "answer": f"示例答案 {i+1}"
            })
        
        return examples
    
    def score_response(self, task: Dict, response: str) -> float:
        """评分响应质量"""
        # 简化的评分逻辑(实际应用中会更复杂)
        if not response or len(response.strip()) < 5:
            return 0.0
        
        # 基于任务类型的评分
        task_name = task["name"].lower()
        
        if "数学" in task_name or "算术" in task_name:
            # 数学题评分:检查是否包含数字和计算过程
            if any(char.isdigit() for char in response):
                return random.uniform(0.6, 1.0)
            else:
                return random.uniform(0.0, 0.4)
        
        elif "逻辑" in task_name:
            # 逻辑题评分:检查推理过程
            reasoning_indicators = ["因为", "所以", "因此", "由于", "推理", "逻辑"]
            if any(indicator in response for indicator in reasoning_indicators):
                return random.uniform(0.7, 1.0)
            else:
                return random.uniform(0.2, 0.6)
        
        else:
            # 其他任务的通用评分
            return random.uniform(0.3, 0.8)
    
    def extract_reasoning_steps(self, response: str) -> List[str]:
        """提取推理步骤"""
        # 寻找推理标识词
        reasoning_markers = ["首先", "然后", "接下来", "最后", "因此", "所以"]
        
        steps = []
        sentences = response.split('。')
        
        for sentence in sentences:
            if any(marker in sentence for marker in reasoning_markers):
                steps.append(sentence.strip())
        
        return steps
    
    def assess_reasoning_quality(self, response: str) -> Dict[str, Any]:
        """评估推理质量"""
        reasoning_steps = self.extract_reasoning_steps(response)
        
        return {
            "num_reasoning_steps": len(reasoning_steps),
            "reasoning_depth": "深入" if len(reasoning_steps) >= 3 else "浅显",
            "logical_structure": "清晰" if len(reasoning_steps) > 0 else "模糊",
            "step_quality": sum(len(step.split()) for step in reasoning_steps) / len(reasoning_steps) if reasoning_steps else 0
        }
    
    def calculate_bigbench_statistics(self, 
                                    task_results: Dict[str, Any], 
                                    category_performance: Dict[str, List[Any]]) -> Dict[str, Any]:
        """计算BIG-bench统计数据"""
        
        # 总体性能统计
        all_scores = [result["score"] for result in task_results.values() if "score" in result]
        
        overall_stats = {
            "mean_score": np.mean(all_scores) if all_scores else 0,
            "median_score": np.median(all_scores) if all_scores else 0,
            "std_score": np.std(all_scores) if all_scores else 0,
            "min_score": np.min(all_scores) if all_scores else 0,
            "max_score": np.max(all_scores) if all_scores else 0,
            "total_tasks": len(task_results),
            "successful_tasks": len(all_scores)
        }
        
        # 按类别统计
        category_stats = {}
        for category, results in category_performance.items():
            scores = [r["score"] for r in results if "score" in r]
            if scores:
                category_stats[category] = {
                    "mean_score": np.mean(scores),
                    "task_count": len(results),
                    "success_rate": len(scores) / len(results),
                    "difficulty_analysis": self.analyze_category_difficulty(category, results)
                }
        
        # 能力边界分析
        capability_analysis = self.analyze_capability_boundaries(task_results)
        
        # 与人类基准对比
        human_comparison = self.compare_with_human_baseline(overall_stats)
        
        return {
            "overall_performance": overall_stats,
            "category_breakdown": category_stats,
            "capability_analysis": capability_analysis,
            "human_comparison": human_comparison,
            "improvement_areas": self.identify_improvement_areas(category_stats)
        }
    
    def analyze_capability_boundaries(self, task_results: Dict[str, Any]) -> Dict[str, Any]:
        """分析能力边界"""
        # 找出表现最好和最差的任务
        scored_tasks = [(task_id, result["score"]) for task_id, result in task_results.items() if "score" in result]
        scored_tasks.sort(key=lambda x: x[1])
        
        worst_tasks = scored_tasks[:10]  # 最差的10个任务
        best_tasks = scored_tasks[-10:]  # 最好的10个任务
        
        # 分析失败模式
        failure_patterns = self.analyze_failure_patterns(
            [task_results[task_id] for task_id, _ in worst_tasks]
        )
        
        # 分析成功模式
        success_patterns = self.analyze_success_patterns(
            [task_results[task_id] for task_id, _ in best_tasks]
        )
        
        return {
            "worst_performing_tasks": [
                {"task_id": task_id, "score": score, "task_name": task_results[task_id]["task_info"]["name"]}
                for task_id, score in worst_tasks
            ],
            "best_performing_tasks": [
                {"task_id": task_id, "score": score, "task_name": task_results[task_id]["task_info"]["name"]}
                for task_id, score in best_tasks
            ],
            "failure_patterns": failure_patterns,
            "success_patterns": success_patterns
        }
    
    def analyze_failure_patterns(self, failed_results: List[Dict]) -> List[str]:
        """分析失败模式"""
        patterns = []
        
        # 分析任务类型
        task_types = [result["task_info"]["category"] for result in failed_results]
        most_failed_category = max(set(task_types), key=task_types.count)
        
        patterns.append(f"在{most_failed_category}类别任务中表现较差")
        
        # 分析是否需要思维链
        cot_required_tasks = [
            result for result in failed_results 
            if result["task_info"].get("requires_chain_of_thought", False)
        ]
        
        if len(cot_required_tasks) > len(failed_results) * 0.6:
            patterns.append("在需要多步推理的任务中表现不佳")
        
        return patterns
    
    def analyze_success_patterns(self, success_results: List[Dict]) -> List[str]:
        """分析成功模式"""
        patterns = []
        
        # 分析成功的任务类型
        task_types = [result["task_info"]["category"] for result in success_results]
        most_success_category = max(set(task_types), key=task_types.count)
        
        patterns.append(f"在{most_success_category}类别任务中表现优秀")
        
        return patterns
    
    def compare_with_human_baseline(self, model_stats: Dict[str, Any]) -> Dict[str, Any]:
        """与人类基准对比"""
        # 模拟人类基准数据(实际数据来自BIG-bench论文)
        human_baseline = {
            "mean_score": 0.85,  # 人类平均分
            "expert_score": 0.92,  # 专家分数
            "non_expert_score": 0.78  # 非专家分数
        }
        
        model_score = model_stats["mean_score"]
        
        comparison_result = {
            "model_vs_human_avg": model_score - human_baseline["mean_score"],
            "model_vs_expert": model_score - human_baseline["expert_score"], 
            "model_vs_non_expert": model_score - human_baseline["non_expert_score"],
            "performance_level": self.categorize_performance_level(model_score, human_baseline)
        }
        
        return comparison_result
    
    def categorize_performance_level(self, model_score: float, human_baseline: Dict) -> str:
        """分类性能级别"""
        if model_score >= human_baseline["expert_score"]:
            return "超越专家水平"
        elif model_score >= human_baseline["mean_score"]:
            return "达到人类平均水平"
        elif model_score >= human_baseline["non_expert_score"]:
            return "接近人类水平"
        else:
            return "低于人类水平"
    
    def identify_improvement_areas(self, category_stats: Dict[str, Any]) -> List[str]:
        """识别改进领域"""
        improvements = []
        
        # 找出表现最差的类别
        sorted_categories = sorted(
            category_stats.items(),
            key=lambda x: x[1]["mean_score"]
        )
        
        worst_categories = sorted_categories[:3]  # 最差的3个类别
        
        for category, stats in worst_categories:
            if stats["mean_score"] < 0.5:
                improvements.append(f"加强{category}领域的训练")
        
        # 检查思维链需求
        overall_avg = np.mean([stats["mean_score"] for stats in category_stats.values()])
        if overall_avg < 0.6:
            improvements.append("增强多步推理和思维链能力")
        
        return improvements

# 使用示例
def example_model_inference(prompt: str) -> str:
    """示例模型推理函数"""
    # 这里应该调用实际的LLM模型
    return f"这是模型对以下提示的回答:{prompt[:50]}..."

# 执行BIG-bench评估
evaluator = BIGBenchEvaluator()

# 评估示例
results = evaluator.evaluate_model(
    model_inference_func=example_model_inference,
    evaluation_method="few_shot_cot",
    num_shots=3,
    sample_tasks=50,  # 评估50个任务
    use_cot=True
)

print("BIG-bench评估完成!")
print(f"总体平均分: {results['overall_statistics']['overall_performance']['mean_score']:.3f}")
print(f"性能级别: {results['overall_statistics']['human_comparison']['performance_level']}")
print(f"改进建议: {results['overall_statistics']['improvement_areas']}")

2. BBH (BIG-Bench Hard) 专门评估

class BBHEvaluator:
    """BIG-Bench Hard专门评估器"""
    
    def __init__(self):
        self.bbh_tasks = self.load_bbh_tasks()
        self.setup_scoring_functions()
    
    def load_bbh_tasks(self) -> Dict[str, Dict]:
        """加载BBH任务定义"""
        return {
            "boolean_expressions": {
                "description": "评估布尔表达式的求值能力",
                "example_question": "not ( ( not not True ) ) 的值是什么?",
                "scoring_type": "exact_match",
                "difficulty": "hard"
            },
            
            "causal_judgement": {
                "description": "评估因果关系判断能力",
                "example_question": "如果下雨了,地面会湿。现在地面湿了,是否意味着下雨了?",
                "scoring_type": "classification",
                "difficulty": "hard"
            },
            
            "logical_deduction": {
                "description": "评估逻辑推演能力",
                "example_question": "A坐在B的左边,B坐在C的左边,那么A相对于C的位置是?",
                "scoring_type": "exact_match",
                "difficulty": "very_hard"
            },
            
            "multistep_arithmetic": {
                "description": "评估多步算术计算能力", 
                "example_question": "((15 + 3) × 2 - 6) ÷ 4 + 7 = ?",
                "scoring_type": "numerical",
                "difficulty": "medium"
            },
            
            "temporal_sequences": {
                "description": "评估时序推理能力",
                "example_question": "如果今天是星期三,那么5天后是星期几?",
                "scoring_type": "exact_match", 
                "difficulty": "hard"
            }
        }
    
    def setup_scoring_functions(self):
        """设置评分函数"""
        self.scoring_functions = {
            "exact_match": self.exact_match_scoring,
            "classification": self.classification_scoring,
            "numerical": self.numerical_scoring,
            "semantic": self.semantic_scoring
        }
    
    def evaluate_bbh_performance(self, model_inference_func, use_cot: bool = True) -> Dict[str, Any]:
        """评估BBH性能"""
        print("开始BBH (BIG-Bench Hard) 评估...")
        
        bbh_results = {}
        
        for task_name, task_info in self.bbh_tasks.items():
            print(f"评估BBH任务: {task_name}")
            
            try:
                # 构建提示
                if use_cot:
                    prompt = self.build_cot_prompt(task_info)
                else:
                    prompt = self.build_standard_prompt(task_info)
                
                # 模型推理
                response = model_inference_func(prompt)
                
                # 评分
                scoring_func = self.scoring_functions[task_info["scoring_type"]]
                score = scoring_func(task_info, response)
                
                bbh_results[task_name] = {
                    "score": score,
                    "response": response,
                    "difficulty": task_info["difficulty"],
                    "scoring_type": task_info["scoring_type"],
                    "description": task_info["description"]
                }
                
            except Exception as e:
                print(f"BBH任务 {task_name} 评估失败: {e}")
                bbh_results[task_name] = {
                    "score": 0.0,
                    "error": str(e),
                    "difficulty": task_info["difficulty"]
                }
        
        # 计算BBH统计
        bbh_stats = self.calculate_bbh_statistics(bbh_results)
        
        return {
            "bbh_results": bbh_results,
            "bbh_statistics": bbh_stats,
            "evaluation_method": "chain_of_thought" if use_cot else "standard",
            "timestamp": time.time()
        }
    
    def build_cot_prompt(self, task_info: Dict) -> str:
        """构建思维链提示"""
        return f"""
任务:{task_info['description']}

请逐步思考并解决这个问题:

{task_info['example_question']}

让我一步步分析:
1. 首先,我需要...
2. 然后,...
3. 因此,答案是...

请按照这种方式回答:
"""
    
    def build_standard_prompt(self, task_info: Dict) -> str:
        """构建标准提示"""
        return f"""
任务:{task_info['description']}

问题:{task_info['example_question']}

请给出答案:
"""
    
    def exact_match_scoring(self, task_info: Dict, response: str) -> float:
        """精确匹配评分"""
        # 模拟评分逻辑
        return 1.0 if "正确" in response else 0.0
    
    def classification_scoring(self, task_info: Dict, response: str) -> float:
        """分类评分"""
        return random.uniform(0.0, 1.0)
    
    def numerical_scoring(self, task_info: Dict, response: str) -> float:
        """数值评分"""
        # 检查是否包含正确的数字
        import re
        numbers = re.findall(r'\d+(?:\.\d+)?', response)
        return 1.0 if numbers else 0.0
    
    def semantic_scoring(self, task_info: Dict, response: str) -> float:
        """语义评分"""
        return random.uniform(0.3, 0.9)
    
    def calculate_bbh_statistics(self, bbh_results: Dict[str, Any]) -> Dict[str, Any]:
        """计算BBH统计数据"""
        scores = [result["score"] for result in bbh_results.values() if "score" in result]
        
        # 按难度分析
        difficulty_stats = {}
        for result in bbh_results.values():
            if "difficulty" in result:
                difficulty = result["difficulty"]
                if difficulty not in difficulty_stats:
                    difficulty_stats[difficulty] = []
                if "score" in result:
                    difficulty_stats[difficulty].append(result["score"])
        
        difficulty_averages = {
            diff: np.mean(scores) if scores else 0
            for diff, scores in difficulty_stats.items()
        }
        
        return {
            "overall_bbh_score": np.mean(scores) if scores else 0,
            "median_bbh_score": np.median(scores) if scores else 0,
            "total_bbh_tasks": len(self.bbh_tasks),
            "completed_tasks": len(scores),
            "difficulty_breakdown": difficulty_averages,
            "hardest_tasks": self.identify_hardest_tasks(bbh_results),
            "bbh_vs_overall_comparison": self.compare_bbh_with_overall(scores)
        }
    
    def identify_hardest_tasks(self, bbh_results: Dict[str, Any]) -> List[Dict[str, Any]]:
        """识别最困难的任务"""
        scored_tasks = [
            (task_name, result["score"], result.get("description", ""))
            for task_name, result in bbh_results.items()
            if "score" in result
        ]
        
        # 按分数排序,找出最困难的
        scored_tasks.sort(key=lambda x: x[1])
        
        return [
            {"task_name": name, "score": score, "description": desc}
            for name, score, desc in scored_tasks[:5]
        ]
    
    def compare_bbh_with_overall(self, bbh_scores: List[float]) -> Dict[str, Any]:
        """比较BBH与整体BIG-bench表现"""
        bbh_avg = np.mean(bbh_scores) if bbh_scores else 0
        
        # 模拟整体BIG-bench分数(实际应该从完整评估获取)
        overall_avg = 0.65  # 假设的整体平均分
        
        return {
            "bbh_average": bbh_avg,
            "overall_average": overall_avg,
            "difficulty_gap": overall_avg - bbh_avg,
            "relative_performance": bbh_avg / overall_avg if overall_avg > 0 else 0
        }

# BBH评估示例
bbh_evaluator = BBHEvaluator()
bbh_results = bbh_evaluator.evaluate_bbh_performance(
    example_model_inference,
    use_cot=True
)

print("BBH评估结果:")
print(f"BBH平均分: {bbh_results['bbh_statistics']['overall_bbh_score']:.3f}")
print(f"最困难任务: {bbh_results['bbh_statistics']['hardest_tasks'][0]['task_name']}")

评估结果可视化

1. 综合性能仪表板

import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

class BIGBenchVisualizer:
    """BIG-bench结果可视化器"""
    
    def __init__(self, evaluation_results: Dict[str, Any]):
        self.results = evaluation_results
        plt.rcParams['font.sans-serif'] = ['SimHei']
    
    def create_performance_dashboard(self):
        """创建性能仪表板"""
        # 创建子图
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=("类别性能分布", "难度级别对比", "方法对比", "能力雷达图"),
            specs=[[{"type": "bar"}, {"type": "bar"}],
                   [{"type": "bar"}, {"type": "scatterpolar"}]]
        )
        
        # 1. 类别性能分布
        category_stats = self.results["overall_statistics"]["category_breakdown"]
        categories = list(category_stats.keys())
        scores = [stats["mean_score"] for stats in category_stats.values()]
        
        fig.add_trace(
            go.Bar(x=categories, y=scores, name="类别平均分"),
            row=1, col=1
        )
        
        # 2. 难度级别对比(如果有BBH结果)
        if "bbh_statistics" in self.results:
            difficulty_breakdown = self.results["bbh_statistics"]["difficulty_breakdown"]
            difficulties = list(difficulty_breakdown.keys())
            diff_scores = list(difficulty_breakdown.values())
            
            fig.add_trace(
                go.Bar(x=difficulties, y=diff_scores, name="难度级别"),
                row=1, col=2
            )
        
        # 3. 评估方法对比(模拟数据)
        methods = ["Zero-shot", "Few-shot", "CoT", "Few-shot+CoT"]
        method_scores = [0.45, 0.62, 0.58, 0.73]  # 模拟分数
        
        fig.add_trace(
            go.Bar(x=methods, y=method_scores, name="评估方法"),
            row=2, col=1
        )
        
        # 4. 能力雷达图
        capabilities = ["语言理解", "数学推理", "科学知识", "常识推理", "创造思维", "偏见检测"]
        capability_scores = [0.75, 0.65, 0.70, 0.68, 0.55, 0.72]  # 模拟分数
        
        fig.add_trace(
            go.Scatterpolar(
                r=capability_scores,
                theta=capabilities,
                fill='toself',
                name='模型能力'
            ),
            row=2, col=2
        )
        
        # 更新布局
        fig.update_layout(
            title="BIG-bench评估结果仪表板",
            height=800,
            showlegend=True
        )
        
        fig.show()
    
    def plot_capability_boundaries(self):
        """绘制能力边界图"""
        capability_analysis = self.results["overall_statistics"]["capability_analysis"]
        
        worst_tasks = capability_analysis["worst_performing_tasks"]
        best_tasks = capability_analysis["best_performing_tasks"]
        
        # 创建对比图
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
        
        # 最差任务
        worst_names = [task["task_name"][:15] for task in worst_tasks[:8]]
        worst_scores = [task["score"] for task in worst_tasks[:8]]
        
        bars1 = ax1.barh(worst_names, worst_scores, color='lightcoral', alpha=0.7)
        ax1.set_title('表现最差的任务')
        ax1.set_xlabel('评分')
        ax1.set_xlim(0, 1)
        
        # 最好任务
        best_names = [task["task_name"][:15] for task in best_tasks[:8]]
        best_scores = [task["score"] for task in best_tasks[:8]]
        
        bars2 = ax2.barh(best_names, best_scores, color='lightgreen', alpha=0.7)
        ax2.set_title('表现最好的任务')
        ax2.set_xlabel('评分')
        ax2.set_xlim(0, 1)
        
        plt.tight_layout()
        plt.show()
    
    def generate_comprehensive_report(self, output_path: str):
        """生成综合评估报告"""
        report_content = f"""
# BIG-bench评估综合报告

## 评估概要
- 评估时间: {datetime.fromtimestamp(self.results['metadata']['timestamp']).strftime('%Y-%m-%d %H:%M:%S')}
- 评估方法: {self.results['metadata']['evaluation_method']}
- 总任务数: {self.results['metadata']['total_tasks_evaluated']}

## 整体表现
"""
        
        overall_perf = self.results["overall_statistics"]["overall_performance"]
        report_content += f"""
- 平均得分: {overall_perf['mean_score']:.3f}
- 中位数得分: {overall_perf['median_score']:.3f}
- 标准差: {overall_perf['std_score']:.3f}
- 成功完成任务: {overall_perf['successful_tasks']}/{overall_perf['total_tasks']}
"""
        
        # 与人类对比
        human_comp = self.results["overall_statistics"]["human_comparison"]
        report_content += f"""
## 与人类基准对比
- 性能级别: {human_comp['performance_level']}
- 与人类平均水平差距: {human_comp['model_vs_human_avg']:+.3f}
- 与专家水平差距: {human_comp['model_vs_expert']:+.3f}
"""
        
        # 类别表现
        report_content += "\n## 分类别表现\n"
        category_breakdown = self.results["overall_statistics"]["category_breakdown"]
        
        for category, stats in category_breakdown.items():
            report_content += f"- {category}: {stats['mean_score']:.3f} ({stats['task_count']}个任务)\n"
        
        # 改进建议
        improvements = self.results["overall_statistics"]["improvement_areas"]
        if improvements:
            report_content += "\n## 改进建议\n"
            for improvement in improvements:
                report_content += f"- {improvement}\n"
        
        # 能力边界分析
        capability_analysis = self.results["overall_statistics"]["capability_analysis"]
        report_content += f"""
## 能力边界分析

### 最困难任务 (前5)
"""
        for task in capability_analysis["worst_performing_tasks"][:5]:
            report_content += f"- {task['task_name']}: {task['score']:.3f}\n"
        
        report_content += """
### 擅长任务 (前5)
"""
        for task in capability_analysis["best_performing_tasks"][:5]:
            report_content += f"- {task['task_name']}: {task['score']:.3f}\n"
        
        # 保存报告
        with open(output_path, 'w', encoding='utf-8') as f:
            f.write(report_content)
        
        print(f"BIG-bench评估报告已保存至: {output_path}")

# 完整评估流程示例
def comprehensive_bigbench_evaluation():
    """综合BIG-bench评估流程"""
    
    # 初始化评估器
    evaluator = BIGBenchEvaluator()
    bbh_evaluator = BBHEvaluator()
    
    # 1. 完整BIG-bench评估
    print("执行完整BIG-bench评估...")
    bigbench_results = evaluator.evaluate_model(
        model_inference_func=example_model_inference,
        evaluation_method="few_shot_cot",
        num_shots=3,
        sample_tasks=100,  # 评估100个任务
        use_cot=True
    )
    
    # 2. BBH专门评估
    print("执行BBH专门评估...")
    bbh_results = bbh_evaluator.evaluate_bbh_performance(
        model_inference_func=example_model_inference,
        use_cot=True
    )
    
    # 3. 合并结果
    combined_results = {
        **bigbench_results,
        "bbh_evaluation": bbh_results
    }
    
    # 4. 可视化和报告
    visualizer = BIGBenchVisualizer(combined_results)
    visualizer.create_performance_dashboard()
    visualizer.generate_comprehensive_report("bigbench_evaluation_report.md")
    
    return combined_results

# 执行评估
# results = comprehensive_bigbench_evaluation()

评估意义和应用价值

1. 模型能力全景评估

  • 全面覆盖:204个任务覆盖认知能力的各个维度
  • 挑战性:专注于超出当前模型能力的任务
  • 前瞻性:预测模型发展的潜在方向

2. 科研价值

  • 能力涌现研究:识别规模增长带来的新兴能力
  • 认知对比:与人类认知能力进行系统对比
  • 技术路线图:为AI发展提供清晰的能力地图

3. 工程应用指导

  • 模型选择:基于具体任务需求选择合适模型
  • 能力评估:客观评估模型在特定领域的表现
  • 改进方向:识别模型的薄弱环节和改进空间

最佳实践建议

1. 评估策略设计

  • 分阶段评估:先评估核心能力,再扩展到完整基准
  • 方法对比:测试不同提示策略的效果
  • 持续跟踪:定期评估模型能力发展

2. 结果解读

  • 相对比较:重点关注与基线模型的相对提升
  • 能力边界:识别模型的强项和弱点
  • 实用性评估:结合具体应用场景解读结果

3. 改进应用

  • 针对性训练:基于评估结果设计训练策略
  • 能力补强:通过集成学习弥补单一模型不足
  • 应用适配:根据能力特点选择合适的应用场景

相关概念

  • MMLU - 多任务语言理解评估
  • HumanEval - 代码生成能力测试
  • TruthfulQA - 真实性和事实准确性评估

延伸阅读