通过在推理阶段动态分配更多计算资源让模型’思考更久’来提升复杂任务性能的新范式
class InferenceTimeCompute: """ 推理时间计算的简化实现 """ def __init__(self, model, max_thinking_tokens=100000): self.model = model self.max_thinking_tokens = max_thinking_tokens def adaptive_thinking(self, problem, difficulty_score): """ 根据问题难度动态调整思考时间 """ # 简单问题:少量思考 if difficulty_score < 0.3: thinking_budget = 1000 num_samples = 1 # 中等问题:适度思考 elif difficulty_score < 0.7: thinking_budget = 10000 num_samples = 3 # 困难问题:深度思考 else: thinking_budget = self.max_thinking_tokens num_samples = 6 # o3高效模式 return self.think_and_solve( problem, thinking_budget, num_samples ) def think_and_solve(self, problem, budget, samples): """ 执行思考过程 """ solutions = [] for _ in range(samples): thinking_chain = [] tokens_used = 0 while tokens_used < budget: # 生成思考步骤 thought = self.generate_thought(problem, thinking_chain) thinking_chain.append(thought) tokens_used += len(thought) # 检查是否找到解决方案 if self.is_solution_found(thought): break # 检查是否需要回溯 if self.should_backtrack(thought): thinking_chain = self.backtrack(thinking_chain) solutions.append(self.extract_solution(thinking_chain)) # 选择最佳解决方案 return self.select_best_solution(solutions)
# 数学竞赛问题(AIME 2024) problem = """ 找出最小的正整数n,使得n! + (n+1)! + (n+2)! 是一个完全平方数。 """ # 传统模型:直接尝试 traditional_model_response = "让我计算...n = 3" # 错误 # o1模型:中等思考 o1_response = """ [内部思考10k代币] 让我系统地分析... 首先,我注意到 n! + (n+1)! + (n+2)! = n!(1 + (n+1) + (n+1)(n+2)) = n!(1 + n + 1 + n² + 3n + 2) = n!(n² + 4n + 4) = n!(n+2)² 因此需要n!是完全平方数... [继续推理] 答案:n = 3 """ # o3模型:深度思考 o3_response = """ [内部思考100k代币,多路径探索] [尝试路径1...发现问题...回溯] [尝试路径2...验证...成功] 经过详细分析和验证,答案是n = 3 置信度:99.9% """
def assess_problem_difficulty(problem): """ 评估问题难度以决定推理时间 """ indicators = { 'multi_step': check_multi_step(problem), 'abstract': check_abstraction_level(problem), 'constraint_complexity': analyze_constraints(problem), 'domain_expertise': check_domain_requirements(problem) } # 根据指标计算难度分数 difficulty = sum(indicators.values()) / len(indicators) # 决定推理策略 if difficulty > 0.8: return { 'mode': 'deep_thinking', 'thinking_tokens': 100000, 'samples': 1024, # o3低效模式 'estimated_cost': '$50-100' } elif difficulty > 0.5: return { 'mode': 'moderate_thinking', 'thinking_tokens': 10000, 'samples': 6, # o3高效模式 'estimated_cost': '$5-10' } else: return { 'mode': 'quick_thinking', 'thinking_tokens': 1000, 'samples': 1, 'estimated_cost': '<$1' }
def cost_benefit_analysis(problem_value, solution_accuracy): """ 推理时间计算的成本效益分析 """ strategies = { 'standard': { 'cost': 0.1, 'accuracy': 0.4, 'time': 1 }, 'o1_moderate': { 'cost': 5, 'accuracy': 0.7, 'time': 10 }, 'o3_efficient': { 'cost': 20, 'accuracy': 0.85, 'time': 30 }, 'o3_intensive': { 'cost': 100, 'accuracy': 0.95, 'time': 300 } } # 计算每个策略的ROI best_strategy = None best_roi = -float('inf') for name, metrics in strategies.items(): expected_value = problem_value * metrics['accuracy'] roi = (expected_value - metrics['cost']) / metrics['cost'] if roi > best_roi: best_roi = roi best_strategy = name return best_strategy, best_roi