大语言模型推理性能优化技术,KV缓存、量化、投机解码等前沿技术
class PagedAttention:
def __init__(self, block_size=16):
self.block_size = block_size
self.physical_blocks = []
self.block_allocator = BlockAllocator()
def allocate_kv_cache(self, sequence_length):
"""分页式KV缓存分配"""
num_blocks = math.ceil(sequence_length / self.block_size)
allocated_blocks = []
for _ in range(num_blocks):
block = self.block_allocator.allocate()
allocated_blocks.append(block)
return allocated_blocks
def compute_attention(self, query, key_cache, value_cache, block_tables):
"""高效的分页注意力计算"""
# 使用CUDA kernel实现高效的分页注意力
return paged_attention_kernel(
query, key_cache, value_cache, block_tables
)
class KVCacheManager:
def __init__(self, gpu_memory_utilization=0.9):
self.gpu_memory = torch.cuda.get_device_properties().total_memory
self.cache_memory = int(self.gpu_memory * gpu_memory_utilization)
self.memory_pool = create_memory_pool(self.cache_memory)
def preemptive_scheduling(self, requests):
"""抢占式调度释放KV缓存"""
if self.memory_pool.is_full():
# 找到优先级最低的请求进行抢占
victim_request = self.find_preemption_victim(requests)
self.evict_kv_cache(victim_request)
return self.allocate_cache_blocks()
class KVCacheQuantization:
def __init__(self, quantization_bits=8):
self.bits = quantization_bits
self.scale_factor = 2 ** (quantization_bits - 1) - 1
def quantize_kv_cache(self, key_states, value_states):
"""KV缓存INT8量化"""
# 计算量化参数
k_scale = key_states.abs().max() / self.scale_factor
v_scale = value_states.abs().max() / self.scale_factor
# 执行量化
k_quantized = torch.clamp(
key_states / k_scale, -self.scale_factor, self.scale_factor
).round().to(torch.int8)
v_quantized = torch.clamp(
value_states / v_scale, -self.scale_factor, self.scale_factor
).round().to(torch.int8)
return k_quantized, v_quantized, k_scale, v_scale
def dequantize_kv_cache(self, k_quantized, v_quantized, k_scale, v_scale):
"""反量化恢复"""
key_states = k_quantized.float() * k_scale
value_states = v_quantized.float() * v_scale
return key_states, value_states
class OmniQuant:
def __init__(self, model, bits=4):
self.model = model
self.bits = bits
self.learnable_scaling = True
def quantize_weights_and_activations(self):
"""权重和激活值联合量化"""
for name, module in self.model.named_modules():
if isinstance(module, nn.Linear):
# 权重量化
quantized_weight = self.weight_quantization(module.weight)
# 激活值量化(运行时)
module.register_forward_hook(self.activation_quantization_hook)
# 更新量化后的权重
module.weight.data = quantized_weight
def weight_quantization(self, weight):
"""可微分权重量化"""
# 学习量化参数
scale = nn.Parameter(torch.ones(weight.shape[0]))
zero_point = nn.Parameter(torch.zeros(weight.shape[0]))
# STE(直通估计器)实现可微分量化
quantized = fake_quantize(weight, scale, zero_point, self.bits)
return quantized
class ChunkedPrefillScheduler:
def __init__(self, chunk_size=2048):
self.chunk_size = chunk_size
self.pending_prefills = []
self.running_decodes = []
def schedule_batch(self):
"""混合批次调度"""
batch = []
# 添加解码请求(内存密集型)
decode_requests = self.get_decode_requests()
batch.extend(decode_requests)
# 添加分块的预填充请求(计算密集型)
if self.pending_prefills:
prefill_chunk = self.create_prefill_chunk()
batch.append(prefill_chunk)
return self.execute_mixed_batch(batch)
def create_prefill_chunk(self):
"""创建预填充分块"""
request = self.pending_prefills.pop(0)
chunk_start = request.processed_tokens
chunk_end = min(
chunk_start + self.chunk_size,
len(request.input_tokens)
)
return PrefillChunk(
request_id=request.id,
tokens=request.input_tokens[chunk_start:chunk_end],
chunk_id=request.chunk_count
)
class PriorityQueueScheduler:
def __init__(self):
self.high_priority = PriorityQueue()
self.normal_priority = PriorityQueue()
self.batch_size = 32
def schedule_requests(self):
"""多优先级调度避免队头阻塞"""
batch = []
# 优先处理高优先级请求
while not self.high_priority.empty() and len(batch) < self.batch_size:
request = self.high_priority.get()
if self.can_fit_in_batch(request, batch):
batch.append(request)
else:
self.high_priority.put(request) # 放回队列
break
# 填充普通优先级请求
while not self.normal_priority.empty() and len(batch) < self.batch_size:
request = self.normal_priority.get()
if self.can_fit_in_batch(request, batch):
batch.append(request)
else:
self.normal_priority.put(request)
break
return batch
class SpeculativeDecoding:
def __init__(self, draft_model, target_model, lookahead_steps=4):
self.draft_model = draft_model # 小模型,速度快
self.target_model = target_model # 大模型,质量高
self.lookahead_steps = lookahead_steps
def generate_with_speculation(self, input_ids):
"""投机解码生成"""
generated_tokens = []
current_ids = input_ids
while len(generated_tokens) < max_length:
# 步骤1:草稿模型快速生成候选tokens
draft_tokens = self.draft_model.generate(
current_ids,
max_new_tokens=self.lookahead_steps,
do_sample=True
)
# 步骤2:目标模型并行验证
acceptance_probs = self.target_model.compute_token_probs(
current_ids, draft_tokens
)
# 步骤3:接受/拒绝决策
accepted_tokens = self.accept_reject_tokens(
draft_tokens, acceptance_probs
)
generated_tokens.extend(accepted_tokens)
current_ids = torch.cat([current_ids, accepted_tokens])
# 如果全部接受,获得最大加速
if len(accepted_tokens) == self.lookahead_steps:
speedup = self.lookahead_steps / 1 # 理论最大加速比
return generated_tokens
def accept_reject_tokens(self, draft_tokens, target_probs):
"""接受拒绝采样"""
accepted = []
for i, token in enumerate(draft_tokens):
draft_prob = self.draft_model.get_token_prob(token)
target_prob = target_probs[i]
# 接受概率 = min(1, target_prob / draft_prob)
accept_prob = min(1.0, target_prob / draft_prob)
if random.random() < accept_prob:
accepted.append(token)
else:
# 使用修正分布重新采样
corrected_prob = (target_prob - draft_prob) / (1 - draft_prob)
new_token = self.sample_from_corrected_dist(corrected_prob)
accepted.append(new_token)
break # 拒绝后停止
return accepted
# vLLM服务配置
vllm_config:
model: "mistral-7b-instruct"
gpu_memory_utilization: 0.9 # GPU内存利用率
max_model_len: 32768 # 最大序列长度
tensor_parallel_size: 4 # 张量并行度
pipeline_parallel_size: 1 # 流水线并行度
# KV缓存优化
kv_cache_dtype: "fp8" # KV缓存数据类型
enable_chunked_prefill: true # 启用分块预填充
max_num_batched_tokens: 8192 # 批次最大token数
# 量化配置
quantization: "fp8" # 权重量化
kv_cache_quantization: true # KV缓存量化
# 调度优化
scheduler_policy: "fcfs" # 调度策略
enable_prefix_caching: true # 前缀缓存
class DistributedLLMService:
def __init__(self, config):
self.config = config
self.setup_distributed_inference()
def setup_distributed_inference(self):
"""分布式推理设置"""
# 张量并行:层内分割
self.tensor_parallel_group = create_tensor_parallel_group(
self.config.tensor_parallel_size
)
# 流水线并行:层间分割
self.pipeline_parallel_group = create_pipeline_parallel_group(
self.config.pipeline_parallel_size
)
# 负载均衡器
self.load_balancer = GPULoadBalancer()
def optimized_inference(self, requests):
"""优化推理流程"""
# 1. 请求路由和负载均衡
distributed_requests = self.load_balancer.distribute(requests)
# 2. 内存预分配和KV缓存管理
cache_manager = self.allocate_kv_cache(distributed_requests)
# 3. 分布式推理执行
results = []
for gpu_id, gpu_requests in distributed_requests.items():
gpu_results = self.execute_on_gpu(gpu_id, gpu_requests)
results.extend(gpu_results)
return results
class LLMPerformanceMonitor:
def __init__(self):
self.metrics = {
'throughput': ThroughputMetric(),
'latency': LatencyMetric(),
'gpu_utilization': GPUUtilizationMetric(),
'memory_usage': MemoryUsageMetric(),
'cache_hit_rate': CacheHitRateMetric()
}
def collect_metrics(self):
"""收集性能指标"""
return {
# 吞吐量指标
'tokens_per_second': self.metrics['throughput'].get(),
'requests_per_second': self.calculate_rps(),
# 延迟指标
'p50_latency': self.metrics['latency'].percentile(50),
'p95_latency': self.metrics['latency'].percentile(95),
'p99_latency': self.metrics['latency'].percentile(99),
# 资源利用率
'gpu_memory_usage': self.metrics['memory_usage'].gpu_memory(),
'kv_cache_usage': self.metrics['memory_usage'].kv_cache(),
'gpu_compute_utilization': self.metrics['gpu_utilization'].get(),
# 缓存效率
'prefix_cache_hit_rate': self.metrics['cache_hit_rate'].prefix(),
'kv_cache_efficiency': self.metrics['cache_hit_rate'].kv()
}
优化技术 | 吞吐量提升 | 延迟降低 | 内存节省 | GPU利用率 |
---|---|---|---|---|
PagedAttention | 4x | 30% | 50% | 85% |
KV缓存量化 | 1.8x | 15% | 30% | 90% |
分块预填充 | 2.3x | 25% | 20% | 95% |
投机解码 | 2-3x | 40% | 10% | 80% |
综合优化 | 8-12x | 60% | 70% | 95% |
def calculate_cost_efficiency(baseline_cost, optimized_performance):
"""计算成本效益"""
return {
'cost_per_token': baseline_cost / optimized_performance['throughput'],
'latency_improvement': (
baseline_latency - optimized_performance['latency']
) / baseline_latency,
'hardware_savings': 1 - (optimized_gpus / baseline_gpus),
'roi_months': calculate_roi_period(
hardware_savings, optimization_investment
)
}